开放信息提取(OpenIE)的最先进的神经方法通常以自回旋或基于谓词的方式迭代地提取三重态(或元组),以免产生重复。在这项工作中,我们提出了一种可以平等或更成功的问题的不同方法。也就是说,我们提出了一种新型的单通道方法,用于开放式启发,该方法受到计算机视觉的对象检测算法的启发。我们使用基于双方匹配的订单不足损失,迫使独特的预测和用于序列标签的仅基于变压器的纯编码体系结构。与质量指标和推理时间相比,与标准基准的最新模型相比,提出的方法更快,并且表现出卓越或类似的性能。我们的模型在CARB上的新最新性能为OIE2016评估,而推断的速度比以前的最新状态更快。我们还在两种语言的零弹奏设置中评估了模型的多语言版本,并引入了一种生成合成多语言数据的策略,以微调每个特定语言的模型。在这种情况下,我们在多语言Re-OIE2016上显示了15%的性能提高,葡萄牙语和西班牙语的F1达到75%。代码和型号可在https://github.com/sberbank-ai/detie上找到。
translated by 谷歌翻译
我们介绍了两个数据增强技术,它与Reset-Bilstm-CTC网络一起使用,显着降低了在手写文本识别(HTR)任务上的最佳报告结果之外的字错误率(WER)和字符错误率(CER)。我们应用了一种基于打印文本(StackMix)的删除文本(手写污染)和手写文本生成方法的新型增强,这被证明在HTR任务中非常有效。StackMix使用弱监督框架来获得字符边界。因为这些数据增强技术与所使用的网络无关,所以也可以应用于增强其他网络的性能和HTR的方法。十个手写文本数据集的广泛实验表明,手写墨水增强和StackMix显着提高了HTR模型的质量
translated by 谷歌翻译
支持II社区的当前趋势,我们提出了一个称为融合大脑的AI Journey 2021挑战,这些挑战是融合大脑,该挑战是使普通架构处理不同的方式(即图像,文本和代码),并解决视觉和语言的多个任务。融合脑挑战https://github.com/sberbank- ai/fusion_brain_aij2021结合了以下特定任务:code2code翻译,手写文本识别,零拍摄对象检测和视觉问题应答。我们为每个任务创建了数据集以测试参与者的提交。此外,我们在俄语和英语中开设了一个新的手写数据集,其中包含94,130对图像和文本。DataSet的俄罗斯部分是世界上最大的俄罗斯手写数据集。我们还提出了基线解决方案和相应的特定于任务特定解决方案以及整体指标。
translated by 谷歌翻译
t-SNE remains one of the most popular embedding techniques for visualizing high-dimensional data. Most standard packages of t-SNE, such as scikit-learn, use the Barnes-Hut t-SNE (BH t-SNE) algorithm for large datasets. However, existing CPU implementations of this algorithm are inefficient. In this work, we accelerate the BH t-SNE on CPUs via cache optimizations, SIMD, parallelizing sequential steps, and improving parallelization of multithreaded steps. Our implementation (Acc-t-SNE) is up to 261x and 4x faster than scikit-learn and the state-of-the-art BH t-SNE implementation from daal4py, respectively, on a 32-core Intel(R) Icelake cloud instance.
translated by 谷歌翻译
The ultimate goal of artificial intelligence is to mimic the human brain to perform decision-making and control directly from high-dimensional sensory input. All-optical diffractive neural networks provide a promising solution for realizing artificial intelligence with high-speed and low-power consumption. To date, most of the reported diffractive neural networks focus on single or multiple tasks that do not involve interaction with the environment, such as object recognition and image classification, while the networks that can perform decision-making and control, to our knowledge, have not been developed yet. Here, we propose to use deep reinforcement learning to realize diffractive neural networks that enable imitating the human-level capability of decision-making and control. Such networks allow for finding optimal control policies through interaction with the environment and can be readily realized with the dielectric metasurfaces. The superior performances of these networks are verified by engaging three types of classic games, Tic-Tac-Toe, Super Mario Bros., and Car Racing, and achieving the same or even higher levels comparable to human players. Our work represents a solid step of advancement in diffractive neural networks, which promises a fundamental shift from the target-driven control of a pre-designed state for simple recognition or classification tasks to the high-level sensory capability of artificial intelligence. It may find exciting applications in autonomous driving, intelligent robots, and intelligent manufacturing.
translated by 谷歌翻译
Often clickbait articles have a title that is phrased as a question or vague teaser that entices the user to click on the link and read the article to find the explanation. We developed a system that will automatically find the answer or explanation of the clickbait hook from the website text so that the user does not need to read through the text themselves. We fine-tune an extractive question and answering model (RoBERTa) and an abstractive one (T5), using data scraped from the 'StopClickbait' Facebook pages and Reddit's 'SavedYouAClick' subforum. We find that both extractive and abstractive models improve significantly after finetuning. We find that the extractive model performs slightly better according to ROUGE scores, while the abstractive one has a slight edge in terms of BERTscores.
translated by 谷歌翻译
Transformers have become the state-of-the-art neural network architecture across numerous domains of machine learning. This is partly due to their celebrated ability to transfer and to learn in-context based on few examples. Nevertheless, the mechanisms by which Transformers become in-context learners are not well understood and remain mostly an intuition. Here, we argue that training Transformers on auto-regressive tasks can be closely related to well-known gradient-based meta-learning formulations. We start by providing a simple weight construction that shows the equivalence of data transformations induced by 1) a single linear self-attention layer and by 2) gradient-descent (GD) on a regression loss. Motivated by that construction, we show empirically that when training self-attention-only Transformers on simple regression tasks either the models learned by GD and Transformers show great similarity or, remarkably, the weights found by optimization match the construction. Thus we show how trained Transformers implement gradient descent in their forward pass. This allows us, at least in the domain of regression problems, to mechanistically understand the inner workings of optimized Transformers that learn in-context. Furthermore, we identify how Transformers surpass plain gradient descent by an iterative curvature correction and learn linear models on deep data representations to solve non-linear regression tasks. Finally, we discuss intriguing parallels to a mechanism identified to be crucial for in-context learning termed induction-head (Olsson et al., 2022) and show how it could be understood as a specific case of in-context learning by gradient descent learning within Transformers.
translated by 谷歌翻译
Content scanning systems employ perceptual hashing algorithms to scan user content for illegal material, such as child pornography or terrorist recruitment flyers. Perceptual hashing algorithms help determine whether two images are visually similar while preserving the privacy of the input images. Several efforts from industry and academia propose to conduct content scanning on client devices such as smartphones due to the impending roll out of end-to-end encryption that will make server-side content scanning difficult. However, these proposals have met with strong criticism because of the potential for the technology to be misused and re-purposed. Our work informs this conversation by experimentally characterizing the potential for one type of misuse -- attackers manipulating the content scanning system to perform physical surveillance on target locations. Our contributions are threefold: (1) we offer a definition of physical surveillance in the context of client-side image scanning systems; (2) we experimentally characterize this risk and create a surveillance algorithm that achieves physical surveillance rates of >40% by poisoning 5% of the perceptual hash database; (3) we experimentally study the trade-off between the robustness of client-side image scanning systems and surveillance, showing that more robust detection of illegal material leads to increased potential for physical surveillance.
translated by 谷歌翻译
Generative adversarial networks are a promising tool for image generation in the astronomy domain. Of particular interest are conditional generative adversarial networks (cGANs), which allow you to divide images into several classes according to the value of some property of the image, and then specify the required class when generating new images. In the case of images from Imaging Atmospheric Cherenkov Telescopes (IACTs), an important property is the total brightness of all image pixels (image size), which is in direct correlation with the energy of primary particles. We used a cGAN technique to generate images similar to whose obtained in the TAIGA-IACT experiment. As a training set, we used a set of two-dimensional images generated using the TAIGA Monte Carlo simulation software. We artificiallly divided the training set into 10 classes, sorting images by size and defining the boundaries of the classes so that the same number of images fall into each class. These classes were used while training our network. The paper shows that for each class, the size distribution of the generated images is close to normal with the mean value located approximately in the middle of the corresponding class. We also show that for the generated images, the total image size distribution obtained by summing the distributions over all classes is close to the original distribution of the training set. The results obtained will be useful for more accurate generation of realistic synthetic images similar to the ones taken by IACTs.
translated by 谷歌翻译
Decentralized learning with private data is a central problem in machine learning. We propose a novel distillation-based decentralized learning technique that allows multiple agents with private non-iid data to learn from each other, without having to share their data, weights or weight updates. Our approach is communication efficient, utilizes an unlabeled public dataset and uses multiple auxiliary heads for each client, greatly improving training efficiency in the case of heterogeneous data. This approach allows individual models to preserve and enhance performance on their private tasks while also dramatically improving their performance on the global aggregated data distribution. We study the effects of data and model architecture heterogeneity and the impact of the underlying communication graph topology on learning efficiency and show that our agents can significantly improve their performance compared to learning in isolation.
translated by 谷歌翻译